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Many problems in approximation theory can be formulated with the help
of generalized weight functions. The use of such functions, introduced by
Moursund [8] in 1966, proved to be of interest, especially in approximation
problems with constraints ([5], [6], [9], [10], [12-15]). Moursund, who
considered linear appproximation, studied existence, characterization, and
uniqueness of best approximations.

In the present paper we give a generalization of the characterization
theorem for the case of generalized rational approximation, using a general­
ized weight function. In the theory of uniform approximation, without
constraints, this theorem is known as Kolmogoroff's criterion ([7, p. 13 and
p. 125]). The characterization theorem in Moursund's paper fails to hold in
certain special cases. Therefore, the present paper can also be considered as a
correction to the theory given in [8].

1. BASIC NOTATIONS AND DEFINITIONS

Suppose X is a compact metric space; the distance between two points,
x and y, of X denoted by d(x, y); C(X) is the class of all continuous real
valued functions defined on X; f is an element of C(X); P and Q are linear
subspaces of C(X) of finite dimension. Let R be the class of generalized
rational functions, namely,

R = {pjq : PEP, q E Q and q > 0 on X}.

We suppose that R is not empty.
It was the idea of Moursund to minimize SUP",eX I W[x, rex) - j(x)]1

instead of SUP",eX I rex) - j(x) [ (ordinary best approximation). The function
W(x, y) has to satisfy certain conditions in order that the approximation
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KOLMOGOROFF'S CRITERION 121

for all x E X, and if

problem should make sense ([8, p. 435 and 441]). Thus, we assume that
W(x, y) is a function defined for x E X and - 00 < Y < 00, with its range in
the extended real line, and having the following properties:

(Ia) sgn W(x, y) = sgn Y for all x, Y;

(Ib) W(x, y) is monotone nondecreasing in y

then

IY1 I < IY21, sgn Y1 = sgn Y2 and I W(x, YI)I < 00

I W(x, Y1)1 < I W(x, Y2)1 for all x E X.

(Ic) If g is a continuous real valued function defined on X such that
SUPXEX I W[x, g(x)] I < 00, then for every compact subset Y ~ X and every
E > 0,

sup I W[x, g(x)] I < max{sup I W[x, g(x) + E]!, sup I W[x, g(x) - E]I}.
nY Y Y

A function W(x, y) which satisfies the above conditions is called a
generalized weight function. Some of the well-known approximation
problems which can be stated in terms of generalized weight functions are,
uniform approximation with interpolatory constraints (see Example 3); one­
sided uniform approximation; and restricted range approximation. If
W(x, y) = Y we have ordinary uniform approximation.

Let M(g) = SUPXEX I W[x, g(x)]I. An element r E R is called an approxi­
mation to f if M(r - f) < 00. Further, r is called a best approximation to f
if it is an approximation to f and if M(r - f) :'( M(r1 - f) for every r1 E R.

We remark that in order to deal with the question of existence of a best
approximation, W(x, y) has to satisfy further restrictions (see [16]). In the
case that W(x, y) is continuous, the characterization of a best approximation
is similar to that for ordinary best approximation ([11, p. 885] and [2,
p. 160]).

It is important to notice that property (I b) of W(x, y) does not imply
property (Ic). As a simple example consider X = [0, 1] and

W(x, y) = y if y :'( 0, X E [0, 1],

W(x, y) = yl2 if y > 0, x = 0,

W(x, y) = (2 - 2x + xy)/2 if y > 0, X E (0, 1].

This W(x, y) satisfies (Ia) and (Ib), but not (Ic). To see this, take g = 1 and
Y = [0, 1/2]. Then supxEY I W[x, g(x)] I = 1 but also, if I E I < 1/2,

sup I W[x,g(x) ± E]I = sup 11 + x' (-I
2
± E)I = 1.

xeY xeY
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In ordinary uniform approximation an important role is played by the
extremals of the error curve e(x) = r(x) - j(x). A more general concept of
extremal point is used in the theory of uniform approximation with general­
ized weight functions ([8, p. 443]). Let

U(t, 0) = {x : x E X and d(t, x) < o},

U'(t, 0) = {x : x E X and d(t, x) :s;; o}.

Suppose e = r - fand M(e) = E < 00.

(2a) A point t E X is called a zero extremal with respect to rand f if
for every E > 0 and 0 > 0 there exist points Xl' X 2 E U(t, 0) such that
W[xl ,e(xl) + E] > E and W[x2 , e(x2) - E] < -E.

(2b) A point t E X is called a plus extremal with respect to rand f if the
following two conditions are satisfied:

(i) For each El > 0 and 01 > 0 there exists a point Xl E U(t, 01) such
that W[xl , e(xl ) + El] > E.

(ii) There exist E2 > 0 and O2 > 0 such that X 2 E U(t, O2) implies
W[x2 , e(x2) - E2] > -E.

(2c) A point t E X is called a minus extremal with respect to rand f if
the following two conditions are satisfied:

(i) For each El > 0 and 01 > 0 there exists a point Xl E U(t, 01) such
that W[xl , e(xl) - El] < -E.

(ii) There exist E2 > 0 and O2 > 0 such that X 2 E U(t, O2) implies
W[x2 , e(x2) + E2] < E.

We denote by qr) the set of zero, plus and minus extremals with respect
to r andf. The points of qr) are called critical points with respect to r and.f.
Observe that t rt= qr) if there exist E > 0, 0 > 0 such that X E U(t, 0) implies
I W[x, e(x) ±E]I :s;; E.

2. PROPERTIES OF THE SET OF CRITICAL POINTS

In the proof of the characterization theorem an important role is played
by properties of the critical points. Some of these properties are mentioned
below.

LEMMA 1. If g E qX), t E X and for all E > 0, 0 > 0 there exists a point
x E U(t, 0) such that W[x, g(x) + E] > 0, then g(t) ~ O.
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Proof Suppose get) = b < O. Because of the continuity of g there exists
Do > 0 such that x E U(t, Do) implies

g(x) + Eo < 0 (EO = -b/2).

Using (la), we get: there exist 00 > 0 and EO > 0 such that x E U(t, Do)
implies W[x, g(x) + EoJ < O. This is a contradiction; thus get) < 0 is not
possible.

LEMMA 2. If hE C(X), t E X and for all E > 0, 0 > 0 there exists a point
x E U(t, 0) such that W[x, hex) - EJ < 0 then h(t) ~ O.

The proof of this [emma is similar to that of Lemma 1. Using Lemma 1
and 2, and definitions (2a), (2b), and (2c) we get

THEOREM 1. If r is an approximation to f and t E C(r) then: if t is a zero
extremal, ret) = J(t); ift is a plus extremal, ret) - J(t) ?c 0; and ift is a minus
extremal, ret) - J(t) ~ o.

For illustrations of this theorem see the examples given later. We remark
that ret) = J(t) is possible if t is a plus (or minus) extremal and that
I Wet, ret) - J(t)JI < E = M(r - f) is possible if t E C(r) (see [17]).

LEMMA 3. Suppose u E C(X), M(u) = E < 00, E > 0, 0 > 0, t E X and
V = U'(t, 0/2). If I W[x, u(x) ± 2EJI ~ E for x E U(t, 0), then

sup I W[x, u(x) ± EJI < E.
v

Pro~f For x E U(t, 0) we have

-E ~ W[x, u(x) ± 2EJ ~ E. (2.1)

If u(x) - 2E ~ hex) ~ u(x) + 2E for all x E U(t, 0) then, using property
(1b), (2.1) implies

I W[x, h(x)J I ~ E for all x E U(t, 0). (2.2)

Put A = X" U(t, 0); then A and V are disjoint closed subsets of the compact
metric space X. Using Ursysohn's theorem (see [1, p. 74]) there exists an
element v E C(X) such that

vex) = 0 if xEA; vex) = 1 if XE V;

vex) E [0, IJ if x E X" (A U V).
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Put h+ = u + ED and h- = u - ED. Then we have for all x E U(t, 0):

u(x) ~ h+(x) ~ u(x) + E and u(x) - E ~ h-(x) ~ u(x).

Because of (2.2) we get then, for all x E U(t, 0),

I W[x, h+(x)] [ ~ E and I W[x, h-(x)] I ~ E.

Using the fact that u(x) = h+(x) = h-(x) for x E A, we get

M(h+) < 00 and M(h-) < 00.

Now property (Ie) may be applied with Vas Y; and h+ as g. We obtain

sup I W[x, h+(x)] [ < max{sup I W[x, h+(x) + E], sup I W[x, h+(x) - E]I}.
v v v

Using (2.2) and the definition of h+ we get

sup I W[x, u(x) + E]I < E.
v

In the same way, using Ir instead of h+, we obtain

sup I W[x, u(x) - E][ < E.
v

With the help of Lemma 3 we are now able to prove a theorem which is
similar to one given by Moursund (see [8, theorem 4, p. 442]).

THEOREM 2. If M(r - f) = E < 00 and t E X'" C(r) then there exist
E > 0, 0 > 0 and Eo > 0 such that x E U(t, 0) implies

I W[x, rex) - I (x) ± E]I ~ Eo < E.

Proof Since t is not a critical point, there exist El > 0 and 01 > 0 such
that x E U(t, 01) implies

that is

I W[x, e(x) ± El]1 ~ E (e(x) = rex) - I(x)),

I W[x, e(x) ± 2€]1 ~ E (E = EI/2).

Putting 0 = 01/2, V = U'(t, 0), and Eo = supv I W[x, e(x) ± E]I, we get,
using Lemma 3, Eo < E which concludes the proof.

Making use of Theorem 2, it is now possible to obtain an important
property of the set C(r), expressed in the following:
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n = 1,2,... ;

x =1= lin, n = 1,2,... ;

W(O, y) = 0 if y = 0;

THEOREM 3. The set qr) 01 critical points 01 an approximation r to 1 is
closed.

The proof can be carried out as in [8, Theorem 6, p. 443J.
The set of minus extremals (or plus extremals) need not be closed. We

show this by the following example. Suppose X = [-1, 1] and consider the
following generalized weight function:

W(x, y) = n . y if x = lin,

W(x, y) = y if x =1= 0 and

W(O, y) = 2 + y if y > 0;

W(O, y) = -2 + y if y < O.

Let I(x) = x + 1 on X, and let us approximate 1 by a function which is
constant on X, using the above generalized weight function W(x, y). A best
approximation for1 is r = 1, with M(r - f) = 1. The point x = 0 is a zero
extremal and the points X n = lin, for n = 1,2,... , are all minus extremals.
Thus, the set of minus extremals is not closed in X.

3. SUFFICIENT AND NECESSARY CONDITIONS FOR BEST ApPROXIMATION

As in the theory of ordinary uniform approximation an important role is
played by the linear subspaces P + rQ of qX), where r E R. Such a linear
subspace consists of the elements of qX) of the form p + rq, where pEP
and q E Q. In the following theorems we set, as before, e = r - f

THEOREM 4. Suppose r E R is an approximation to fwith M(e) = E > O.
A sufficient condition for r to be a best approximation is that there exists no
element v E P + rQ with v =1= 0 and

vet) ~ 0

vet) < 0

v(t) ? 0

vet) > 0

vet) = 0

for every plus extremal t E qr) with W[t, e(t)] < E;

for every plus extremal t E qr) with W[t, e(t)] = E;

for every minus extremal t E qr) with W[t, e(t)] > -E; (3.1)

for every minus extremal t E qr) with W[t, e(t)] = -E;

for every zero extremal t E qr).

Proof Suppose r is not a best approximation to f Then there exists a
better one in R, say, r1 = Pllql, so that if e1 = rl - f then

(3.2)

Put v = ql(r1 - r); then v E P + rQ. We show that v satisfies all the con­
ditions (3.1).
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(a) vet) ~ 0 for every plus extremal t E C(r) with Wet, e(t)] < E.
Suppose vet) > 0, i.e., rl(t) - ret) = a > O. By continuity of rl and r in X,
there exists 8 > 0 such that x E U(t, 0) implies € < rl(x) - rex), where
€ = a12. Then rl(x) - f(x) > rex) - f(x) + € for all x E U(t, 0). Because of
the monotonicity property (lb), this implies:

W[x, rex) - f(x) + €] ~ W[x, rl(x) - f(x)] for all x E U(t, 0). (3.3)

Using definition (2b) for a plus extremal, we get that there exists a point
Xl E Vet, 0) with W[XI, e(xI) + €] > E. This result, together with (3.3)
contradict (3.2). Consequently, we must have vet) ,:;; o.

(b) vet) < 0 for every plus extremal t E C(r) with Wet, e(t)] = E.
Because M(el ) < E we have Wet, el(t)] < Wet, e(t)] = E. Using (lb), we
get el(t) < e(t), i.e., rl(t) < ret). Since ql(t) > 0, this implies vet) < O.

(c) vet) ~ 0 for every minus extremal t E C(r) with Wet, e(t)] > -E.
The proof is similar to that of (a).

(d) vet) > 0 for every minus extremal t E C(r) with Wet, e(t)] = -E.
This is proved using the same method as in (b).

(e) vet) = 0 for every zero extremal t E C(r). Suppose vet) > O. Using
the same method as in (a), and definition (2a), we reach a contradiction to
(3.2). The possibility vet) < 0 is handled in the same way as (c), yielding again
a contradiction to (3.2).

In the case where W(x, y) = y, the last theorem reduces to a known
result ([7, p. 128]) because, then, I Wet, e(t)] I = E for every t E C(r). A
theorem giving necessary conditions for best approximation is only possible
under some further restrictions. We prove such a theorem using some of the
ideas suggested by Moursund in [8, pp. 448-449]. First we prove a lemma
which will be needed in the proof of Theorem 5.

LEMMA 4. Suppose € > 0, 0 > 0, t E X, V = V'(t, (12), u E C(X) and
M(u) = E < 00.

(3a) lfu(x) - 2€ ~ Ofor all x E Vet, 0), then supv W[x, u(x) - €] < E.

(3b) Ifu(x) + 2€ ,:;; Ofor all x E U(t, 0), then infv W[x, u(x) + €] > -E.

(3c) If I W[x, u(x) ± 2€11 ,:;; E and u(x) - € ,:;; hex) ~ u(x) + E for all
x E U(t, 8), then supv ( W(x, hex)}! < E.

Proof

(a) Suppose u(x) - 2E ~ 0 for all x E U(t, 0). Let h- be defined as in
Lemma 3. Then

o < h-(x) ,:;; u(x) for x E U(t, 0),
u(x) = h-(x) for x E X", Vet, 0).
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Consequently, using property (Ib), M(h-) ~ E. Applying property (Ic), with
g replaced by h-, and Y by V, we get, using (Ia),

sup W[x, u(x) - E] < max{sup W[x, u(x)], sup [x, u(x) - 2E]}.
V V V

Because 0 ~ u(x) - 2E ~ u(x) for all x E V, we get

sup W[x, u(x) - E] < sup W[x, u(x)] ~ E.
v v

(b) Suppose u(x) + 2E ~ 0 for all x E Vet, 0). Defining h+ as in lemma 3,
we obtain M(h+) ~ E, and as in (a),

sup I W[x, u(x) + E]I < sup I W[x, u(x)] I ~ E.
v v

Because u(x) < u(x) + E < 0 for all x E V, we get, using property (Ia),

inf W[x, u(x) + E] > -E.
v

(c) Part (3c) follows immediately from Lemma 3 and property (lb) of
W(x, y).

THEOREM 5. If r = p!q is a best approximation to f, with M(r - f) =
E > 0, and iffor each t E qr) with ret) = jet), there exist constants 01 > 0,
N > 0, s > 0 (which may depend on t) such that x E Vet, 01), x oF t imply

I W(x, y)1 ~ N' Iy IS,

then there exists no v E P + rQ satisfying:

(3.4)

vet) < 0

v(t) ~ 0

vet) > 0

vet) ~ 0

vet) = 0

for every plus extremal t E qr) with e(t) > 0;

for every plus extremal t E qr) with e(t) = 0;

for every minus extremal t E qr) with e(t) < 0; (3.5)

for every minus extremal t E qr) with e(t) = 0;

for every zero extremal t E C(r).

Proof Suppose there exists an element v = Po + rqo E P + rQ satisfying
(3.5). As in ordinary uniform approximation ([2, p. 159]) we seek a constant
k > 0 such that M(rk - f) < E, with rk = (p + kPo)!(q - kqo). To this end,
we show that for each t E X there exist constants 0t > 0, mt > 0 and a
function E1(t, k) such that if x E Vet, Ot) and k E (0, mt] then

IW[x, rk - j(x)] I ~ E1(t, k) < E.
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Observe that rk = r + k . vl(q - kqo). Set

T = max I v(x)l;
xeX

mo = min q(x) > 0.
xex

(a) Let t be a plus extremal of qr) with e(t) = ret) - f(t) i=- 0. By
Theorem 1, e(t) = A > 0; therefore, by (3.5), vet) = B < 0. By continuity,
there exist 01 > 0, 02 > °such that

X E U(t, 01)

x E U(t, 02)

implies AI2 < rex) - f(x),

implies vex) < B12.

Let °= min(ol ,°2), V = U'(t, 012),

n1 = max{no , I}, and

Then T1 ~ mo/2 > 0. If we set

for k E (0, mt] and x E V, we have

then and,

A T
rix) - I(x) > "2 - k . T

1
~ O.

Set

(3.6)

T2 = [ sup q(x)] + m 1 • no
xeU(t.8j

For k E (0, mt] and x E U(t, 0), we have

and k'l BI
€ = 2· Tz •

rk(x) - f(x) ~ rex) - I(x) - €,

rex) - I(x) - 2€ > 0.

Using (3a) of Lemma 4, with u = e, (3.8) implies

sup W(x, rex) - I(x) - €] < E.
v

(3.7)

(3.8)

(3.9)

From (3.6), (3.7), and property (lb) it follows that if x E V and k E (0, mt],

°< W(x, rk(x) - I(x)] ~ sup W[x, e(x) - €]. (3.10)
v
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Set E1(t, k) = supv W[x, rk(x) - I(x)] and 0t = 012. Then (3.9) and (3.10)
imply

IW[x, rk(x) - j(x)]1 ~ E1(t, k) < E for x E U(t, Ot) and k E (0, mt].

(3.11)

(b) Let t be a minus extremal of qr) with eel) i=- 0. From Theorem 1
and (3.5) follows, e(t) = A < °and vet) = B > 0. In the same way as in
(a), using (3b) of Lemma 4, we get, there exist 0t > 0, mt > °and E1(t, k)
such that

IW[x, rk(x) - l(x)]1 ~ E1(t, k) < E for x E U(t, 0t) and k E (0, mt].

(3.12)

(c) Let t be a point of qr) with eel) = °and vet) = 0. In this case,
(3.4) is satisfied. With S = (EI2N)1/s,

I y I ~ S implies I W(x, y)1 ~ E12, (3.13)

for x E U(t, 01), x i=- t. Because e(t) = 0, there exists 02 > °such that
x E U(t, 02) implies I e(x) I < S/2. Let 0, T1 , V and m1 be defined as in (a).
Set

then x E V and k E (0, mt] imply

k [ v(x)[
I rk(x) - l(x)1 ~ I e(x)I + () k () ,q x - . qo x

T
I rix) - I(x) I < S/2 + k . T

1
~ S.

Set E1(t, k) = E12, 0t = 012, and note that rk(t) - I(t) = 0. Using (3.13)
and property (Ia), we have

IW[x, rk(x) - I(x)] I ~ E1(t, k) < E for x E U(t, 0t) and k E (0, mt].

(3.14)

(d) Let t be a point of qr) with e(t) = °and vet) i=- 0. Suppose that
vet) > °(the case vet) < °can be handled in the same way). Then because
of (3.5), the point t is a minus extremal. Definition (2c) implies that there
exists EO > °such that

W[t, EO] = W[t, e(t) + EO] < E. (3.15)
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We proceed now in the same way as in (c), but with

Then, for k E (0, m t ] and x E U(t, 0), x oF t, we have

I W[x, rix) - f(x)] I ::;; E12.

Since, for k E (0, mt],

T°< rit) - f(t) ::;; e(t) + k . T < E,
1

we have, using (3.15) and property (lb),

W[t, rk(t) - f(t)] < E.

(3.16)

(3.17)

Setting E1(t, k) = max{EI2, W[t, rk(t) - f(t)]} and 0t = 012, (3.16) and (3.17)
imply

IW[x, rk(x) - f(x)] I ::;; E1(t, k) < E for x E U(t, 0t) and k E (0, mt].

(3.18)

(e) Let t E ~C(r). Because t 1= C(r), there exist 0 > °and E > Osuch
that

X E U(t, 0) implies I W[x, e(x) ± E]I ::;; E. (3.19)

Let T1 , Vand m1 be defined as in (a). We take now

If x E U(t, 0) and k E (0, mt] then

E E
r(x) - f(x) - "2 ~ rk(x) - j(x) ~ r(x) - j(x) + "2 .

Set E1(t, k) = supv [ W[x, rk(x) - f(x)] [ and 0t = 0/2; then, using (3.19) and
(3c) of Lemma 4, we get

I W[x, rk(x) - j(x)] I ~ E1(t, k) < E for x E U(t, Ot) and k E (0, mtl,

(3.20)

(f) Conclusion. From (3.11), (3.12), (3.14), (3.18), and (3.20) follows:
for each t E X there exist constants 0t > 0, mt > 0, and a function E1(t' k)
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such that x E Vet, St) and k E (0, mt] imply I W[x, rk(x) - j(x)]1 ~

E1(t, k) < E. The set of neighborhoods V(t, St) form an open cover of X.
Since X is a compact metric space, there exists a finite subcover, say,

{V(ti' St,): i = I,2, ... ,p}.

If k 1 = min1~i~p mt; and E1 = max1~i~p E1(ti ,k1), then k 1 > 0 and
E1 < E. For k E (0, k 1 ] and all x E X, we have then

I W[x, rix) - j(x)]1 ~ £1 < E.

This means that such rk are better approximations to f than r, contradicting
the hypothesis that r is a best approximation to f This concludes the proof.

One can combine Theorems 4 and 5, to obtain the following:

COROLLARY 1. If r is an approximation to f, with M(r - 1) = E > 0,
and if

(i) W(x, y) satisfies a condition of the form (3.4) at each t E qr) with
ret) = jet);

(ii) I W[t, ret) - j(t)][ = E for each t E qr) with r(t) oF jet);

then r is a best approximation to f if and only if there exists no v E P + rQ
such that (3.5) holds.

We remark that Theorems 4 and 5 are different from the corresponding
result in [8, Theorem 10, p. 447]; see also [17]. As an illustration of our results
we give two examples.

EXAMPLE 1. Supposej(x) = x and X = [1/2,2]. Let P be the linear sub­
space spanned by p(x) = 1, and Q the linear subspace spanned by q(x) = x.
Then r must be of the form alx, where a is a constant. We want to approx­
imate f so that r(2) - j (2) ;;, -1. The corresponding generalized weight
function W(x, y) = Y if x oF 2, W(2, y) = y if y ;;, -1, and W(x, y) = - 00

if y < -1. Consider rex) = 21x. The point Xl = 1/2 is a plus extremal and
X 2 = 2 is a minus extremal because W[Xl' e(x1)] = M(r - 1) = 7/2 and
W[x2 , e(x2) - E] = - 00, for each E > O. It is clear that the approximation
rex) =, 21x is a best approximation. This is in agreement with Theorems 4 and
5 because there exists no v E P + rQ (a constant function) such that v(x1) < 0
and v(x2) ;;, O.

EXAMPLE 2. Letj(x) = (1 + x)/2 and X = [-1,1]. Let us approximate
f by a rational function of the form rex) = axl(b + cx), constrained by
reO) - j(O) ;;, -1/2. The corresponding generalized weight function
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W(x,y) = y if x =I=- 0, W(O,y) = y if y;:? -1/2, and W(O,y) = -OCJ if
y < -1/2. Consider rex) = 4xl(3 - x), for which M(r - f) = 1. The points
Xl = -1 and X 2 = °are minus extremals; the point X 3 = 1is a plus extremal.
There exists an element v E P + rQ, namely, vex) = -x - 8x/(3 - x) such
that v(1) < 0, v(O) ;:? 0, v( -1) > 0. According to Theorem 3, r is not a best
approximation; indeed, a better one is

with M(r l - 1) = 1/2.

4. EQUIVALENT STATEMENTS OF THE CHARACTERIZATION THEOREMS

It is· possible to give equivalent statements for Theorems 4 and 5, under
some restrictions on P + rQ and C(r), using methods of the theory of
ordinary uniform approximation. First we prove a lemma, to be used in
the next theorem. Set Co = {t : t E C(r) and ret) = f(t)} and

C' = {t : t E C(r) and ret) =I=- f(t)}.

LEMMA 5. If r is an approximation to f with M(r - f) = E > 0, and if
W(x, y) satisfies a condition of the form (3.4)for every t E Co, then C' is closed
in X and not empty.

Proof First we prove that C' is not empty. If C' were empty then we
would have for every t E C(r), W[t, ret) - f(t)] = 0, because of property
(Ia) of W(x, y). For such t, there exist 0lt > 0, N > 0, and s > °such that
if Iy I :( S (where S = (2NIE)-lls, x E U(t, 0It) and x =I=- t, we have
I W(x, Y)I :( EI2 [because of condition (3.4)]. For every t E C(r) there exists
02t > °such that I rex) - f(x)! < S for all x E U(t, 021), Set 0t = min{olt, 02t};
then I W[x, rex) - f(x)]] ~ EI2 = do(t) whenever x E U(t, Ot) and x"* t.
If t ¢ C(r) then according to Theorem 2 there exist 0t > 0, Et > °and
do(t) > °such that IW[x, rex) - f(x) ± Et]1 :( do(t) < Efor every x E U(t, Ot).
Consider now all the neighborhoods U(t, 0t), t E X. They form an open cover
of X. Since X is a compact metric space, there exists a finite subcover, say,
{U(ti , od : i = 1,2,... , p}. Put d l = maxI';;;i';;;'P do(ti); then dl < E. It
follows that I W[x, rex) - f(x)] I :( d l for every x E X, i.e., M(r - f) :( d l < E.
This contradicts M(r - f) = E; thus, C' can not be empty.

We prove now that C' is closed. To see this, note that every t E Co is an
isolated point of C(r). Suppose to E Co is not isolated in C(r). From the con­
tinuity of rand f in X follows the existence of 03 > °such that x E U(to , 03)
implies I r(x) - f(x) ± S/2 I < S. Set

and
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E
\ W[X, rex) - j(x) ± E]l ~ 2 for every x E U(to', 0'), x #- to .

There exists a point t1 E C(r) such that t1 E U(to , 0'/2) and t1 =1= to' Let
04 = d(to , t1), the distance between to and t1 in X; then for all x E V(t1 , ( 4)

we have IW[x, rex) - J(x) ± E]I ~ E/2. This contradicts the fact that
t1 E C(r). Thus, every point of Co is an isolated point of C(r). From this and
Theorem 3 it clearly follows that C is closed.

COROLLARY 2. Set

C+ = {t : t E C' and t is a plus extremal}

and
C- = {t : t E C' and t is a minus extremal}.

Then under the conditions oj Lemma 5, the sets C+ and C- are closed.

Proof Suppose t = limi->oo ti with ti E C+. Using Lemma 5, we have
tEe, and, because of Theorem 1, r(ti ) - J(ti ) > O. By continuity,

ret) - J(t) 3 O.

Since tEe, we must have ret) - J(t) > 0 and, therefore, t is a plus extremal.
Consequently, C+ is closed. In the same way we can prove that C- is closed.

In the rest of this paper we assume:

(i) P + rQ is a Haar subspace of dimension k; this means that 0 is
the only function in P + rQ which has k or more zeros in X;

(ii) The number m of points in Co is at most k - 1;

(iii) W(x, y) satisfies a condition of the form (3.4) for every t E Co;

(iv) Co contains only zero extremals and 1 W[t, ret) - J(t)]1 = E for
every tEe.

THEOREM 6. If r is a best approximation to J with M(r - f) = E > 0 and
if the assumptions (i)-(iii) are satisfied then there exist n ~ k - m + 1
(distinct) points t} E C, and positive numbers Al , A2 , ... , An such that

n

I A} . [ret}) - j(t})] . vet}) = 0
}~1

for every v E K, (4.1)

where K = {v : v E P + rQ, and vet) = 0 if t E CO}.
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Proof From Theorem 5 follows: there exists no v E K with

vet) . [f(t) - ret)] > 0 for every t E C'.

Using a Theorem on linear inequalities ([2, p. 19]) and a Theorem of
Caratheodory ([2, p. 17]), the result follows. We note, however, that in order
to be able to apply the Theorem on linear inequalities, the set C' must be
compact. The compactness of C' follows from Lemma 5 and the compactness
of X. Note also that the set K is not empty because of the conditions (i)
and (ii).

THEOREM 7. If r is an approximation to f with M(r - f) = E > 0, and if the
assumptions (i), (ii), (iv) are satisfied, then r is a best approximation to f if
there exist n ,:;; k - m + 1 (distinct) points t1 , t2 , ••• , tn in C t

, and positive
numbers '\ , A2 '00', An such that (4.1) is satisfied.

Proof We may assume that L;~l \ = 1. Let a(x) be the vector with
components a;(x) = [J(x) - rex)] . v;(x), i = 1,2 ... p, where {v1 'V2 ... vp}
is a basis for K. Note that p = k - m. Let T = {tj:j = 1,2'" n} and
Z = {a(t): t E T}. From (4.1) follows: 0 = L;~l \ .a(tj ); therefore 0 [the
origin of (real) Euclidean p-space] belongs to the convex hull of Z. Using
the above Theorem on linear inequalities and the compactness of Z, we get
that there exists no v E K with [J(t) - ret)] . vet) > 0 for every t E T. There­
fore, there exists no v E P + rQ which satisfies (3.1), because of the conditions
(iv). According to Theorem 4, r is a best approximation to f

It is possible to combine Theorems 6 and 7, if we suppose that the condi­
tions (i)-(iv) hold. We state the result as

COROLLARY 3. Suppose r is an approximation to f with M(r - f) = E > 0
and suppose the assumptions (i)-(iv) are satisfied. Then r is a best approximation
tofifand only tfthere exist n ,:;; k - m + 1 (distinct) points tj E C', andpositive
numbers A1 , A2 , ... , An such that (4.1) holds.

This corollary can be formulated in several equivalent forms if X = [a, b].
For these, we refer the reader to [3, pp. 65-70]. The situation here and there
is quite similar, although our theory is more general. We mention here just
two of these equivalent statements.

COROLLARY 4. Suppose that the conditions of Corollary 3 are satisfied,
with X = [a, b]. Then r is a best approximation to f if and only if the origin of
(real) Euclideanp-space is in the convex hull ofthe set {[ret) - J(t)] . i: t E C'},
where i = (V1(t), ... , vp(t», and {V1 ,... , vp} is any basis ofK.
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COROLLARY 5. Suppose that the conditions of Corollary 3 are satisfied,
with X = [a, b]. Then r is a best approximation to f if and only if there exist
in C' points t1 , t2 , ... , tn (n = k - m + 1) satisfying

sgn([r(ti) - f(t i)] . Di) = (-1 )i+l sgn([r(t1) - l(t1)] . D1)

for i = 2, 3,... , n, where

Di =

V1(t1) l\(ti-l) V1(ti+l)'" v1(tn)
V2(t1) Vlti- I) V2(ti+l)'" v2(tn). .

. .
vp(tI) ... viti-I) viti+I)'" vp(tn)

and {VI' V2 ... Vp} is any basis for K (p = k - m).

We remark that Corollary 5 includes the classical alternation theorem if
m = 0, because then all Di have the same sign. To illustrate the above results,
we give two examples.

EXAMPLE 3. Suppose X = [0,4] and

1

-2 + 2x
I(x) = 6 - 2x

-6+ 2x

if x E [0, 2],
if x E [2, 3],
if x E [3,4].

Let us approximatefby a function of the form r(x) = a + bx with r(2) = 1(2).
The corresponding generalized weight function W(x, y) for this problem
satisfies

W(x, y) = y if x =1= 2;

W(2, y) = 00 if y > 0;

W(2, y) = ° if y = 0;

W(2, y) = -00 if y < 0.

A best approximation to f is r(x) = (2 + 2x)/3. We have M(r - f) = 8/3
and C(r) = {O, 2, 3}, C' = {O, 3}. Put tl = 0, t2 = 3. Then if Al = 1 and
A2 = 2, Theorems 6 and 7 can be applied. Take VI(x) = -2 + x; then
DI = 1, D2 = -2, and Corollary 5 is also applicable.

EXAMPLE 4. Here we illustrate the fact that, in Theorem 7, the condition
that Co contains only zero-extremals is essential. Let I(x) = x in [0, 1],
I(x) = 2 - x in [1,2], and/(x) = -2 + x in [2,3]. Let us approximatef
by a function of the form r(x) = a + bx with r(l) - 1(1) ~ 0. The cor­
responding generalized weight function W(x, y) equals y if x =1= I, W(I, y) = y
if y ~ 0, and W(l, y) = 00 jf y > 0. Consider rI(x) = I in X = [0,3]. Then
M(ri - I) = I, C(rI) = {O, I, 2} and C' = {O, 2}. For tl = 0, t2 = 2,
Al = A2 = I, (4.1) is satisfied. One could try to apply Theorem 7 or
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Corollary 5 (with v1(x) = 1 - X, D1 = -1, D2 = 1). The conclusion that
r1 is a best approximation is, however, wrong because r 2(x) = 1/2 is a better
approximation. The reason for the unavailability of Theorem 7 and
Corollary 5 in this case is that CO contains a plus extremal (t = 1), and, thus,
condition (iv) is not satisfied.
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